
1 www.featureteamprimer.org
Copyright (c) 2010 Craig Larman and Bas Vodde

All Rights Reserved

FEATURE TEAM PRIMER

by Craig Larman and Bas Vodde

Version 1.1

Feature teams and Requirement Areas are key elements of scaling lean and
agile development. They are analyzed in depth in the Feature Team and Require-
ment Area chapters of Scaling Lean & Agile Development: Thinking and Organi-
zational Tools for Large Scale Scrum. This short paper summarizes a few key
ideas and can also be found in Practices for Scaling Lean & Agile Development:
Large, Multisite, and Offshore Product Development with Large-Scale Scrum.

INTRODUCTION TO FEATURE TEAMS

A feature team, shown in Figure 1, is a long-lived,1 cross-functional, cross-component
team that completes many end-to-end customer features—one by one.

Figure 1 Feature team

1. Feature teams stay together for years, implementing many features.

Team has the necessary knowledge and skills to complete
an end-to-end customer-centric feature. If not, the team is
expected to learn or acquire the needed knowledge and skill.

Feature team:
- stable and long-lived
- cross-functional
- cross-component

customer-
centric
feature

potentially
shippable
product

increment

Product
Backlog

2

 Feature Team Primer

www.featureteamprimer.org
Copyright (c) Craig Larman and Bas Vodde 2010

All Rights Reserved

The characteristics of a feature team are listed below:.

Applying modern engineering practices—especially continuous integration—is essen-
tial when adopting feature teams. Continuous integration facilitates shared code own-
ership, which is a necessity when multiple teams work at the same time on the same
components.

A common misunderstanding: every member of a feature team needs to know the
whole system. Not so, because

The team as a whole—not each individual member—requires the skills to imple-
ment the entire customer-centric feature. These include component knowledge and
functional skills such as test, interaction design, or programming. But within the
team, people still specialize… preferably in multiple areas.

Features are not randomly distributed over the feature teams. The current knowl-
edge and skills of a team are factored into the decision of which team works on
which features.

Within a feature team organization, when specialization becomes a constraint…learn-
ing happens.

Feature Team

long-lived—the team stays together so that they can ‘jell’ for
higher performance; they take on new features over time

cross-functional and cross-component

ideally, co-located

work on a complete customer-centric feature, across all com-
ponents and disciplines (analysis, programming, testing, …)

composed of generalizing specialists

in Scrum, typically 7 ± 2 people

A feature team organization exploits speed benefits from special-
ization, as long as requirements map to the skills of the teams.

But when requirements do not map to the skills of the teams,
learning is ‘forced,’ breaking the overspecialization constraint.

Feature teams balance specialization and flexibility.

3

 Feature Team Primer

www.featureteamprimer.org
Copyright (c) Craig Larman and Bas Vodde 2010

All Rights Reserved

Table 1 and Figure 2 show the differences between feature teams and more traditional
component teams.

Table 1 feature teams vs. component teams

feature team component team

optimized for delivering the
maximum customer valuea

a. The different optimization often makes the feature team feel
slower—from the local view.

optimized for delivering the
maximum number of lines of code

focus on high-value features
and system productivity

(value throughput)

focus on increased individual
productivity by implementing

‘easy’ lower-value features

responsible for complete
customer-centric feature

responsible for only part of a
customer-centric feature

‘modern’ way of organizing teamsb
— avoids Conway’s law

b. Relatively ‘modern’ as feature teams have a long history in
large-scale development, for example, Microsoft and Ericsson.

traditional way of organizing teams
— follows Conway’s lawc

c. Mel Conway observed this undesirable structure in 1968, he did
not recommended it—in fact, quite the opposite.

leads to customer focus, visibility,
and smaller organizations

leads to ‘invented’ work and a
forever-growing organization

minimizes dependencies between
teams to increase flexibility

dependencies between teams leads
to additional planningd

d. This additional planning is visible in more “release planning
meetings” or “release trains” and more management overhead.

focus on multiple specializations focus on single specialization

shared product code ownership individual/team code ownership

shared team responsibilities clear individual responsibilities

supports iterative development results in ‘waterfall’ development

exploits flexibility;
continuous and broad learning

exploits existing expertise;
lower level of learning new skills

requires skilled engineering prac-
tices—effects are broadly visible

works with sloppy engineering
practices—effects are localized

provides a motivation to make
code easy to maintain and test

contrary to belief, often leads
to low-quality code in component

seemingly difficult to implement seemingly easy to implement

4

 Feature Team Primer

www.featureteamprimer.org
Copyright (c) Craig Larman and Bas Vodde 2010

All Rights Reserved

Figure 2 feature vs. component teams

The table below summarizes the differences between feature teams and conventional
project or feature groups.

Table 2 Feature teams vs feature projects

Most drawbacks of component teams are explored in the “Feature Teams” chapter of
Scaling Lean & Agile Development, Figure 3 summarizes some of these.

feature team feature group or feature project

stable team that stays together for years
and works on many features

temporary group of people created for one
feature or project

shared team responsibility
for all the work

individual responsibility for ‘their’ part
based on specialization

self-managing team controlled by a project manager

results in a simple single-line
organization (no matrix!)

results in a matrix organization with
resource pools

team members are dedicated—
100% allocated—to the team

members are part-time on many projects
because of specialization

Item 1
Item 2
Item 3
Item 4
...

…

system

comp
C

Team

comp
A

Work from multiple teams is required to finish a
customer-centric feature. These dependencies
cause waste such as additional planning and
coordination work, hand-offs between teams,
and delivery of low-value items.
Work scope is narrow.

Product
Owner

comp
B

Team

comp
A

Team

comp
B

comp
C

Item 1
Item 2
Item 3
Item 4
...

…
Team
Wu

Product
Owner

Team
Shu

Team
Wei

system

comp
A

comp
B

comp
C

Every team completes customer-centric items.
The dependencies between teams are related
to shared code. This simplifies planning but
causes a need for frequent integration, modern
engineering practices, and additional learning.
Work scope is broad.

Component teams Feature teams

5

 Feature Team Primer

www.featureteamprimer.org
Copyright (c) Craig Larman and Bas Vodde 2010

All Rights Reserved

Figure 3 some drawbacks of component teams

What is sometimes not seen is that a component team structure reinforces sequential
development (a ‘waterfall’ or V-model), with many queues with varying-sized work
packages, high levels of WIP, many handoffs, and increased multitasking and partial
allocation.

Choose Component Teams or Feature Teams?

A pure feature team organization is ideal from the value-delivery and organizational-
flexibility perspective. Value and flexibility, however, are not the only criterion for
organizational design, and many organizations therefore end up with a hybrid—espe-
cially during a transition from component to feature teams. Caution: hybrid models
have the drawbacks from both worlds and can be…painful.

A frequently expressed reason in favor of a hybrid organization is the need to build
infrastructure, construct reusable components, or clean up code—work traditionally

Backlog Item 1
Backlog Item 2
...

Comp A
Team

Comp B
Team

Comp
C

Team

Analyst System
Engineer

System
Testers

Iteration 1 Iteration 2
(probably later)

Iterations 3-5
(probably later

and more)

At least
iteration 6

(probably later)

Item 1

requirement
details

for Item 1

'backlog' by
component

not all teams start Item 1
at the same iteration;
they are multitasking on
multiple features

system testers cannot
start immediately on
Item 1; they are
multitasking on
multiple features

not available
until the analyst
is finished

Analysis

Design

Implementation

Test

Component teams lead to a sequential life cycle with handoff, queues, and
single-specialist groups and not true cross-functional teams without handoff.

code

6

 Feature Team Primer

www.featureteamprimer.org
Copyright (c) Craig Larman and Bas Vodde 2010

All Rights Reserved

done within component teams. But these activities can also be done in a pure feature
team organization—without establishing permanent component teams. How? By add-
ing infrastructure, reusable components, or cleanup work to the Product Backlog and
giving it to an existing feature team—as if it were a customer-centric feature. The fea-
ture team temporarily—for as long as the Product Owner wishes—does such work and
then returns to building customer-centric features.

Transitioning to Feature Teams

Different organizations require different transition strategies when changing from
component to feature teams. We have experience with many strategies that
worked…and failed in a different context. A safe—but slow—transitioning strategy is
to establish one feature team within the existing component team organization. After
this team performs well, a second feature team is formed. This continues gradually at
the speed the organization is comfortable with. This is shown in Figure 3.

Table 3 gradual transitioning from feature to component teams

Item 1
Item 2

Item 3

Item 4

…

…

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

Product
Owner

Feature
Team
Red

tasks for A
tasks for B

tasks for A
tasks for B

tasks for A
tasks for C

contains ex-members from component
teams A, B, and C, and from analysis,
architecture, and testing groups

system

7

 Feature Team Primer

www.featureteamprimer.org
Copyright (c) Craig Larman and Bas Vodde 2010

All Rights Reserved

INTRODUCTION TO REQUIREMENT AREAS

Feature teams scale nicely, but when their number goes above ten teams—about a
hundred people—additional structure is needed. Requirement areas provide this struc-
ture and complement the concepts behind feature teams. A requirement area is a
categorization of the requirements leading to different views of the Product Backlog.

The Product Owner (PO) groups every Product Backlog item under exactly one
requirement category—its requirements area. After this, he generates different views
on the overall Product Backlog—called an Area Backlog. The Area Backlogs are pri-
oritized by an Area Product Owner who specializes in part of the product—from a
customer perspective. Each Requirement Area has several feature teams working from
the Area Backlog, as shown in Figure 4.

Figure 4 requirement areas

Requirement areas are scaled-up feature teams. Scaling up by structuring teams
according to the product’s architecture is called development areas. Table 4 summa-
rizes the differences.

Backlog Item 1

…

...

Product Backlog

Backlog Items 1
Backlog Items 2
...

Performance

Backlog Item 3
Backlog Item 4
...

Protocols

feature
team

performance area feature teams

protocols area feature teams

Area
Product
Owner

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

Area
Product
Owner

8

 Feature Team Primer

www.featureteamprimer.org
Copyright (c) Craig Larman and Bas Vodde 2010

All Rights Reserved

Table 4 requirement areas vs. development areas

Finally, an Area Product Owner is different than a supporting Product Owner—some-
one that works with one or two teams to help a busy overall Product Owner. An Area
Product Owner has different responsibilities and focus, and works with (probably) at
least four teams, not just with one. This avoids local optimization toward the activities
of one team.

CONCLUSION

Feature teams are stable teams that are given complete customer-centric features.
These teams resolve local optimizations and extra coordination overhead caused by
component team organizations. However, feature teams are not without challenges
themselves.

Requirement areas scale the feature team concept by creating customer-centric views
on the overall Product Backlog and thus creating a structure that allows feature teams
to be scaled up to any size.

Requirement Area Development Area

organized around
customer-centric requirements

organized around
product’s architecture

no subsystem code ownership code ownership per subsystem

temporary in nature;
should change over the lifetime of the

product, but not at every iteration

tends to be more fixed over
the lifetime of the product

focus on the customer,
using customer language

focus on the architecture,
using technology language

9

 Feature Team Primer

www.featureteamprimer.org
Copyright (c) Craig Larman and Bas Vodde 2010

All Rights Reserved

REFERENCES

 Chapters:

Introduction

Systems Thinking

Lean

Queueing Theory

False Dichotomies

Be Agile

Featurea Teams

Teams

Requirement Areas

Organization

Large-Scale Scrum

Chapters:

Large-Scale Scrum

Test

Product Management

Planning

Coordination

Requirements

Design

Legacy Code

Continuous Integration

Inspect & Adapt

Multisite

Offshort

Contracts

